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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

General relativistic theory of Lagrangian functions of 
‘Bose’ fields in scalar representation 

G. KNAPECZ 
Karinthy 30. VII .  94, Budapest XI, Hungary 
MS. received 30th December 1968 

Abstract. A method is developed for the derivation of general relativistic Lagrangian 
funcrions of ‘Bose’ fields. The method consists of the solution of some functional 
equations which are based only on the requirements of general covariance. The 
most general exact solutions of the ‘strong’ equations are derived. 

1. Introduction 
In  a recent paper (Knapecz 1969) it was proved that any geometric object OH(%) may 

be expressed as a concomitant of an adequate aggregate of scalar potentials SA(%), 
A = 1,2,  . . a ,  1w: 

where FH obeys the transitivity and invertibility conditions (Nijenhuis 1952, L4czd and 
Golab 1960, Kucharzewski and Kuczma 1964). Since any field, which describes integer 
spin particles (‘Bose’ fields, s = 0, h, 2h, ...), are geometric objects (scalars, vectors, 
symmetric tensors, etc.) this theorem means that any ‘Bose’ field, as well as any system of 
them, may be described by some aggregate of scalar fields. 

In  the present paper we investigate what Lagrangian functions of ‘Bose’ fields are 
possible if the validity of the principle of general relativity is supposed. 

In  the next section we investigate the content of the principle of general relativity. In  
the following one we give the functional equations of Lagrangian functions. In  the last two 
sections we deduce the most general Lagrangian densities of ‘Bose’ fields, if they are 
described by their scalar potentials. 

Any theory of ‘Bose’ fields alone is not a complete one. I t  should be supplemented by 
the ‘Fermi’ fields of half-integer spin. Since very little is known about the geometric 
objects, which are suitable to describe the ‘Fermi’ fields, their theory will be developed in a 
series of publications, and thereafter the general relativistic Lagrangian theory of ‘Fermi’ 
fields will be treated. 

2. The principle of general covariance 
The content of a physical principle is to some extent a question of convention. If 

everybody applies the principle in the same sense, the convention exists. In  the contrary 
case it should be described before its application. 

Since different authors give different meaning to the principle of general relativity 
(Kretschmann 1917, Tolman 1934, Pauli 1958, Fock 1959, Epstein 1962, Kibble 1968) we 
describe what we understand by this principle. 

By the principle of general covariance we understand two requirements : 
(i) Nature and its phenomena are describable by geometric objects. 
(ii) If the complete kinematical description of a system is realized by the minimal aggregate 

of geometric objects, then the dynamical (physical) laws of the system are expressible by 
this minimal aggregate, and the expressions of the laws are concomitants of the aggregate. 
The supplementation of the description by redundant variables (for example tetrads Vi(%))  
or the introduction of the covariant derivatives (i.e. the introduction of the connections 
l?kl(x)), etc., is neither needed nor allowed. The  concomitants of geometric objects are by 
themselves generally covariant. 
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The  validity of these requirements is a question of experience. I t  is a fact that in the 
case of the theory of gravitation it was successfully applied. I n  this case the minimal 
aggregate consists of the metric tensor g,,(x), and the Lagrangian density R(det g,,)’I2 
is one of the expressions which are constructed from the gi, alone. X o  further variables are 
needed. 

According to our opinion, the introduction of general covariant derivatives 

$,k + $ , k - r k +  (2) 
into special relativistic expressions is a general relativistic transcription only, which has 
nothing to do with the principle of general covariance. That is, it is not certain that the 
transcription (2) in any case has a physical content. It cannot be a principle. 

3. The fundamental equations 
The Lagrangian functions are not observables, because they are given only up to a 

divergence: L and L +Ass are equivalent. Consequently L has no explicit transformation 
properties under a general coordinate transformation 

Zpk 

LJX‘ 
3, = f k ( x ’ ) ,  0 # det - # x. (3) 

On the other hand, according to the principle of general relativity, the Eulerian equations 
of L should be geometric concomitants, since the field variables are geometric objects. 
Since the ‘Bose’ fields may be described by their scalar potentials SA(xl ) ,  A = 1, 2, ..,, A4, 
in this representation the Eulerian equations should be either ordinary or Weyl densities of 
weight 1. Therefore the functional differential equations of Lagrangian functions of ‘Bose’ 
fields in scalar representation are either 

aL[sB(s), S;(a), . * .] a ZL[SB(x), .. .] + ... _ -  
a S A  ass as!! 

8L[SB(S), S13,(3), ...I a aL[S”(z), ...I + ... - -  as” axs asp, 
EL[SB(x), S,B,(x), ...I B 2L[SB(x), ...I 

= (det $1 (sgn det ___ - -- + ...) ( 5 )  ZS” % s S  as: 
which hold for arbitrary SA(x), xk and = f k ( x ’ ) .  The solutions of these equations con- 
tain the above-mentioned redundant divergence. 

One may avoid the redundancy if one requires the Lagrangian to be an ordinary or a 
Weyl density of weight 1. In  this way one obtains the ‘strong’ equations of Lagrangian 
functions. In  the scalar representation the strong functional equations of the Lagrangian 
functions of ‘Bose’ fields are 

or 

A A A L[S (x), S,k(x) ,  ..., S,k*k2,..12(~)]. ( 7 )  
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4. Solutions of (6 )  
The 'Bose' field theories may be classified according to the multiplicity iW(SA(x), 

A = 1, 2, ..., ,W) of their minimal scalar aggregate, according to the highest derivative r of 
SA(x) ,  and according to the dimensionality n of the space-time. Therefore we denote by 
J W ~  the type of 'Bose' system. 

Theorem 1. The most general Lagrangian of the type LM1 is 

L = (det SJ(x) )I (SA(x) ,  1;) 
where k, I, ..., s, t ,  ... = 1, 2, ..., n ;  CL = n + l ,  n+2, -.., AW 

and I is an invariant function of its M scalar and n(iW-n) invariant arguments 1:. 

Proof. The fundamental equation (6) is in this case 

L(SA,  Si )  = (der L(SA, S,;). 
Since S A  are scalars 

and 
SA = S" 

At an arbitrary instant point P in some frame F the equation (13) for the fields 
SI, S2, ..., S" may take the form 

Since by supposition the scalars SA are independent: 

we obtain from (14) that at the instant point P 

2 P ( P )  m 8 In A( P) 
a%'( P) 8S,lm(P) 
-- - Tl (P) E -- 

where TZ is the inverse of SFnL 

T,kS:, = SF, S:T; = Sf. (17) 
Inserting (16) into (11) we obtain (8), which was the result to be proved. 

Theorem 2. The most general Lagrangian of the type M 2  is 

L = (det SJ(~))I(SA(X), I;, 1,"~ (18) 
where the Ik are given by (9), 

lil = (s:;,-s;T~s;:,)T;T; 
and I is an invariant function of its SA scalar, as well as its Ii, and IkE invariant arguments, 
whose numbers are respectively, M, n(:W-n) and (";')(.W- a). 
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Proof. The fundamental equation (6) in this case is 

where the expressions of the second derivatives S$- are 

The  number of the E2xm/8Zk8Z1 and that of the S;j.(m = 1,2,  ..., n) is equal. Since 
smk; has a non-homogeneous transformation rule, at an instant point P in some coordinate 
system F it may happen that 

Then 
k S,,,(P) = 0. 

Multiplying (23) on the left-hand side by TE, and taking (16) into account, we obtain 

Inserting (24) into (20), we obtain (18), by which the theorem is proved. 

Theorem 3. The invariant Ik l  of (19) may be represented by the form 

and the statement is proved. 

sented by the form (25):  
We mention without proof that all invariants @k2, . ,k '  of higher order may be repre- 

I i ' k ' . .  .kr = (IL'lc'. . . k' - I )  ,t Ti' - (28) 

Therefore the Lagrangians of the type are 

5. Solutions of (7) 

note that the most general Lagrangian density of the IW; type of the Weyl kind is 
The Lagrangians of the Weyl kind are not applied in the physics. Without proof, we 
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